편조 와이어 안테나(Braided Wire Antenna)

이미지
말 그대로 편조선을 이용한 안테나입니다 제 개인적인 호기심입니다.  "만약 동축 케이블의 바깥 편조부분을 안테나 와이어로 이용한다면 얼마나 안테나를 줄일 수 있을까? " 안테나 북에서는 케이블의 두께가 충분히 굵어지면  안테나의 길이가 단축되고 공진 주파수에서 대역폭이 넓어진다 고 되어 있습니다.  레딧의 사람들 이야기로는 약 3% 정도 안테나 길이를 단축할 수 있다고 하던데, 실제로 어떤지 궁금하기도 하고 또 대역폭이 넓어지는 것은 좋은 일이니 직접 해보기로 했습니다.  이것이 무엇이냐!?  이건 접지를 할 때 사용하는 주석을 코팅한 구리선입니다. 너비는 약 2㎝입니다. 레딧의 친구분들 이야기로는 이 케이블은 사실 동축 케이블의 편조선처럼 속이 빈 튜브 형태라고 합니다. 가격이 좀 나가서 살까 말까 고민을 했는데, 어차피 저는 접지용 케이블이 따로 없어서 주문하기로 했습니다.  조금 실수를 한 것이 있다면, 전체 길이가 20미터인데, 21미터를 사야 하는 것을 20미터만 샀습니다. 그래서 딱 한번 정도 시도를 해 볼 수 있을 것 같습니다. 진짜 아슬아슬하거든요. 만약 책에 적혀있는대로 이 케이블이 "충분히 굵다면", 안테나의 길이를 줄일 수 있기 때문에 원하는 공진 주파수에 맞출 수 있을 것 같습니다. 하지만 그렇지 않다면.... 돈을 날리는 것이지요.  아무튼 조만간 반으로 뚝! 잘라서 준비를 한 후 실험해 볼 생각입니다. 현재 계획은 이렇습니다.  편조선을 정확히 절반으로 자른다 밸런과 연결되는 부위는 구리 터미널을 납땜으로 연결한다 편조선의 말단 부분에는 18mm 아크릴 튜브를 넣을 수 있으면 하나씩 넣어준다 (상대적 무게로 인해 편조선이 쫙 펴질 수 있도록) 말단 부분은 고무줄 등으로 묶거나 직접 묶어서 마감한다 (이후 어떻게 할 지 정해야 합니다)  딱 한 번 실험해 보고, 잘 되면 사용하는 것이고, 실패하면 그냥 나중에 저만의 무전실을 만들 때 접지선으로 사용할 예정입니...

트랩 다이폴 2차 실패

이번에는 제 잘못입니다. (언제는!?) 오늘은 영하 5도나 되어서 8시 좀 넘어 나갔습니다. 추운 날씨에 천천히 움직이며 안테나 설치를 시작했는데요...  14㎒ 대역을 조정한 후, 10.1㎒를 맞추기 위해 전선과 트랩을 설치한 후 사고를 쳤습니다.  10.1㎒ 전선을 잘라야 하는데 14㎒ 전선을 잘랐답니다.  다 망쳐습니다. 혼자서 온갖 짜증을 내며 차 안에 남아있는 전선을 꺼내 다시 이어봤는데요, 적당한 길이의 전선을 찾을 수 없어 결국 포기하고 돌아왔습니다. 날씨가 추워서 그랬는지, 아니면 다른 이유였는지는 몰라도 아무 생각없이 14㎒ 대역의 전선을 잘랐습니다. 지금 생각해보니 어떤 이유든 간에 집중력이 떨어졌던 것 같습니다.  교훈 이번에 하면서 느낀 것인데, 이번 작업까지 저는 14㎒ 대역의 전선과 트랩을 설치한 후 14㎒의 튜닝을 하고, 이후 10.1㎒의 전선과 트랩을 설치한 후 10.1㎒의 대역을 조정했습니다. 그런데 이렇게 하면 문제가 생기는 것 같습니다.  어떤 원리인지는 잘 모르겠지만, 트랩이 높은 주파수 대역의 조정을 할 때는 코일로 작동했다가 - 안테나가 긴 것처럼 보이게 만듬 - 다음 대역을 조정하려고 하면 코일이 없는 것처럼 작동했습니다 (갑자기 짧아짐).  다시말해 트랩의 코일이 알게 모르게 대역폭 전체에 영향을 주는 것 같습니다.  그래서 다음부터는 14㎒ - 트랩 - 10.1㎒ - 트랩 - 7㎒까지 전부 다 설치한 후에, 14㎒ 대역을 튜닝하고, 이후 나머지 부분을 조정해야겠다는 생각을 했습니다. 그리고 여벌 전선도 넉넉하게 준비하고요.  생각보다 트랩을 이용한 안테나의 튜닝은 매우 어렵다는 생각이 들었습니다. 뭔가 대역이 고정되지 않고 전체가 서로 영향을 끼치는 것 같습니다. 만약 다음번에도 실패하면 트랩을 이용한 멀티밴드는 포기하려고 합니다.  솔직히 지쳤거든요. 

쵸크 박스(Choke box) 만들기2

이미지
오늘 쉬는 날이라 드릴 작업을 했습니다 케이스는 이것을 선택했습니다. 일반적으로 밸런을 넣거나 기타 부품을 집어 넣을 때에는 가능하면 알루미늄 다이캐스트 박스를 쓰는 것이 좋지만, 쵸크박스의 경우에는 일부러 이 플라스틱 박스를 선택했습니다.  아시겠지만 동축 케이블에 연결되는 리셉터클에서 편조선과 연결되는 부위는 리셉터클의 금속 외피입니다. 그리고 우리가 해결하고 싶은 것은 공통 모드 전류(Common Mode Current)이기 때문에 알루미늄 다이캐스트 박스를 사용하면 전류가 쵸크를 통하지 않고 흐를 수 있는 길을 만들어주는 것이 되기 때문입니다. 병렬 저항의 공식을 이용하면 한쪽에 아무리 5,000Ω의 저항을 걸어줘도, 다른 쪽이 50Ω이라 총 저항은 49.505Ω이 됩니다. 망하는 것이지요. 이런 상황을 차단하기 위해 고의적으로 절연 케이스(플라스틱 인클로저)를 선택한 것입니다.  제작 제작은 대단히 쉬웠습니다. 어차피 플라스틱 박스이니 드릴로 구멍을 내는 것이 상당히 수월하더군요. 다만 드릴 비트를 고속으로 회전시키면 플라스틱이 깎여 나가는 것이 아니라 녹아버리기 때문에 비트를 천천히 회전시켜야 합니다. 그리고 구멍을 낸 후 커터로 거스러미를 정리하고 사포로 살짝 갈아주면 됩니다. 금새 구멍을 냈습니다. N 타입 리셉터클의 설계도를 보고 적당한 구멍을 낸 후 나사 구멍만 만들어 주면 끝입니다.  완벽합니다.  아니, 네... 사실 한쪽은 실수했습니다. ㅠㅠ  왼쪽 위와 오른쪽 아래의 너트를 보시면 뭔가 이상하지요?  제가 구멍을 잘못 내서 단차가 생겨 그렇습니다. 마음 같아서는 새 케이스를 사서 만들고 싶지만 전 돈이 많지 않으니 그냥 잘 밀봉해서 쓰려고 합니다. 그리고 평와서를 이용해 볼트도 잘 고정해 주고요. 어쩔 수 없지요.  어차피 이건 가조립이기 때문에, 나중에 추가 페라이트 토로이드가 오면 제대로 조립을 할 생각입니다. 볼트도 좀 긴 것을 써야 할 것 같고, 평와셔도 추가해야 할 ...

RigExpert Shackmaster OSL Kit

이미지
OSL 키트가 도착했습니다 RigExpert Shackmaster OSL Kit OSL 키트는 임피던스 측정장비의 보정을 위한 표준 부하 세트 입니다. 아마 NanoVNA를 구입한 분들은 잘 알고 계실 텐데요, 임피던스를 측정하기 전에 장비를 보정(Calibration)하거나, 특정 조건에서의 보정을 위해 사용합니다.  총 세 개의 부품으로 구성되어 있는데요,  Open : ∞ Short : 0Ω Load : 50Ω (무선장비) 를 나타냅니다. RigExpert의 경우에 안테나 분석기는 보정이 끝난 상태로 출고되기 때문에 꼭 필요한 제품은 아니지만, 다음의 경우에는 꼭 필요하게 됩니다.  "안테나 급전점의 임피던스 측정을 해야 하는데, 물리적으로 급전점에 접근할 수 없어 추가적인 동축 케이블의 연결등이 필요할 때" 가장 대표적인 예라고 생각합니다. 사실 저도 이 문제로 인해 구입을 했고요.  공부하면 항상 나오는 얘기이지만 안테나의 정확한 임피던스를 측정하기 위해서는 반드시 실제로 안테나를 가동할 환경에 안테나를 설치하고 그 상태에서 임피던스를 측정해야 합니다. 그래야 환경의 영향을 정확히 반영하여 임피던스를 측정할 수 있기 때문입니다.  그런데 말이 쉽지, 7㎒ 다이폴 안테나의 경우 지상고가 0.2𝞴 만 되어도 8미터 입니다. 당연히 사다리를 이용해야 하고 허술하게 작업하다간 추락으로 큰 부상을 입을 수 있는 높이이지요. 그런데 저 같은 떠돌이 아마추어 무선을 하는 사람의 경우에는 장대 사다리를 가지고 다니는 것도 힘들고, 사다리가 있다고 하더라도 오르락 내리락 하다보면 틀림없이 사고가 발생할 수 있습니다. 그래서 이런 경우 어쩔 수 없이 안테나의 급전점에서 안테나 분석기까지 동축 케이블을 이어서 측정을 하게 되는데요. 당연한 이야기지만 이렇게 임피던스를 측정하면 동축 케이블의 영향으로 인해 안테나의 임피던스가 왜곡됩니다. 그럴때 사용할 수 있는 것이 이 OSL 키트입니다.  위와 같은 상황에서 안테나 분...

보도 자료: 한 장의 끝, 유산의 시작 – 국제반신우표권이 역사 속으로

이미지
국제반신우표권 판매종료 공지 12월 15일(스위스 베른) – 1907년 10월 1일 도입된 이래, 국제반신우표권(International reply coupon, IRC)은 전 세계의 수신자, 여행자, 수집가 세대를 함께해 왔습니다. 진정한 보편적 지폐 역할을 하는 이 권은 소지자가 만국우편연합(UPU) 192개 회원국 간 등기되지 않은 국제항공우편물의 우편 요금을 지불할 수 있게 합니다. 거의 120년 동안 10차례에 걸쳐 모델이 변경되며, IRC는 보편적 우편 서비스의 기반이 되는 보편성, 공정성, 연대의 가치를 구현해왔습니다.   2025년 9월 17일 두바이(아랍에미리트)에서 열린 제28차 세계우편총회에서 UPU 회원국들은 보편적 서비스의 적응 및 간소화를 위해 2026년 12월 31일부로 IRC 사용을 중단하기로 결정했습니다. 이 결정은 국제 우편 서비스의 광범위한 변혁 과정 속에서 고객의 디지털 관행과 현대적 시각에 부합하는 자연스러운 진전입니다. UPU 국제국은 이 전환 과정을 지원하게 된 것을 자랑스럽게 생각하며, IRC가 글로벌 우편 협력에서 차지한 역사적 위상과 독보적 역할을 반영하여 UPU 유산으로 전환될 수 있도록 현재 노력 중입니다. IRC는 2026년 12월 31일까지 UPU 회원국 지정 운영기관을 통해 유효하게 판매 및 교환될 수 있습니다. 마지막으로, IRC의 탁월한 유산을 기념하기 위해 특별 기념품이 출시될 예정입니다. IRC의 역사를 추적하고 전례 없는 고객 경험을 제공하는 이 제품은 우표 수집과 UPU 역사 속 상징적인 한 페이지를 기릴 것입니다. 

LC 트랩(LC Trap)을 만들자 - 4

이미지
어제 납땜을 했습니다 직장에서 피곤해서 나중에 할까 했지만 그래도 노력했습니다.  이건 아직 완성 전의 모습입니다. 아크릴 관의 양 측에 전산나사도 설치하지 않았고 커패시터도 연결하기 전의 모습니다.  저 위의 검은색 절연 테이프는 해당 코일에 맞는 커패시터를 헷갈리지 않게 붙여 놓은 것입니다. 지난번 포스트에서 말씀드렸다시피 커패시터의 오차로 인해 주파수가 엄청나게 변할 수 있으니까요.  이건 중간 완성 형태입니다.  코일과 커패시터, 그리고 AWG 14 케이블을 페룰(Ferrules)을 이용해 압착한 후, 다시 납땜을 하고 글루건으로 절연했습니다. 여기까지 하고.... 캡톤 테이프를 또 잃어버려서(!?) 한참을 찾았습니다.  이것이 최종 완성 형태입니다. 여전히 손재주가 없어 캡톤 테이프를 예쁘게 싸지 못했지만, 아무튼 이렇게 만들었습니다. 마음 같아선 조금 더 캡톤 테이프를 덕지덕지 붙여 커패시터 주위에만 예쁘게 감싸지도록 하고 싶었지만, 그런 행동이 커패시터의 열 축적을 유발할 것 같아 포기했습니다.  아무튼 제작 완료 후 다시 한번 공진 주파수를 확인했는데, 모두 제가 계산하고 제작한 그대로의 공진주파수를 보였습니다. 만족합니다.  후기 위 사진을 보시면 아시겠지만 구조도 훨씬 단순하게 바꿨습니다. 전산나사의 하단에는 커패시터와 코일이 연결되도록 했고, 반대측에는 안테나의 전선을 연결할 수 있도록 만들었습니다. 그리고 전에 말씀드린 것과 같이 저는 안테나를 야외에 1년 365일 설치해 두는 것이 아니라 필요할 때만 전개하기 때문에 굳이 방수에 큰 신경을 쓰지는 않았습니다. 물론 그렇다고 해서 완전히 방수가 되지 않는 것은 아니고 문제의 가능성이 있는 부분은 전산나사의 연결부분만 해당될 것 같습니다.  만약 이 트랩을 보다 보기 좋게 만들려면, 직경 10㎝의 절연 케이스에 넣고 밀봉을 하는 방법이 있지만 그렇게 하려면 또 다시 파이프를 자르고 전산나사를 잘라야 해서 하지 않을 겁니다....

LC 트랩(LC Trap)을 만들자 - 3

이미지
제로부터 시작하는 트랩 만들기 오늘 새벽에 나갔습니다. 오늘 목표는 그 동안 제작한 트랩을 안테나에 설치해서 튜닝을 하는 것이었습니다. "실제 안테나의 조립"이 목표였습니다.  낮은 주파수부터 튜닝 시작 초기 계획은 위와 같았지만, 이후 수정한 계획에서는 이 안테나에 총 세 개의 대역을 넣기로 했습니다.  7㎒ 10.1㎒ 14㎒ 그러니 안테나 한개에 총 네 개의 트랩을 설치하는 것이었고, 첫 튜닝은 14㎒부터 시작했습니다. 이때 14㎒ 트랩을 설치하고 튜닝을 할까 아니면 그냥 두고 할까 고민을 하다가 트랩이 전기적 단절을 유발한다고 하더라도 추가 영향이 있을 수 있을 것이라는 생각에 말단부에 14㎒ 트랩을 설치하고 튜닝을 시작했습니다.  처음에는 안테나의 길이가 길어 엉뚱한 곳에 공진이 일어났습니다 몇 차례 양측의 안테나 전선을 자르며 길이를 줄여 나갔습니다.  일반적으로는 안테나 끝을 말아버리거나 꺾어버리면 되기는 하지만, 이번에는 트랩이 달려 있기 때문에 어쩔 수 없이 자르며 줄여나갔습니다.  대략 14㎒에 근접한 위치에 공진이 일어났습니다. 그런데 SWR이 1.4 정도로군요. 트랩에 설치된 코일의 영향인지 무엇인지는 모르겠지만 아무튼 계속 조립을 이어 나갔습니다.    저는 항상 이런 식으로 설치를 하는데, 가운데 삼각대를 설치하고 그 삼각대를 나무에 고정한 후 양 쪽으로 안테나 선을 전개했습니다. 사진의 오른쪽 끝에 보이는 빨간 캡슐 같은 것이 제가 만든 트랩입니다. 원래는 최대 2.6미터까지 삼각대를 올리지만, 이번에는 안테나 조정을 위해 키 높이로 유지했습니다.  뭔가 이상하다.. 문제는 10.1㎒ 트랩의 공진을 확인하기 위해 제일 위의 사진에 그려져 있는 "ㄷ" 형태의 PVC 파이프를 설치한 후 일어났습니다.  뭔가 공진이 이상해졌습니다.  0.7㎒정도 틀어지더군요. 그런데... 저게 뭐지? 14㎒ 위치가 뭔가 이상합니다.  몇 차례 PVC 파이프로 인...